INTERPHASE MASS AND HEAT TRANSFER IN A
COMPACT DISPERSE SYSTEM
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Limiting relations are derived for the Sherwood number, which characterizes convective
diffusion to a solid sphere, a droplet, or a bubble in a constricted stream, applicable to low
values of the Reynolds number and high values of the Peclet number,

Although the problem of heat or mass transfer to isolated particles in a stream of fluid has been
thoroughly analyzed over various ranges of the Reynolds number Re and the Peclet number Pe (see, for
instance, the survey of theoretical studies in [1] and experimental studies in [2]), the solution of an anal-
ogous problem which involves solid particles, droplets, or bubbles in a dense cloud is more difficult, be-
cause the flow field which becomes constricted around a single particle and which affects the heat convec-
tion or the diffusion appreciably is usually unknown. The only exception here is the practically important
case where Re < 1 and Pe > 1, when this field can be roughly estimated on the basis of the semiempirical
cell model of constricted flow, and for which case the diffusion or the heat conduction have been analyzed
in the "thin diffusion layer" approximation {1, 3-5].

The results based on this cell model are of doubtful validity, however, foremost on account of the
indeterminacy of the boundary conditions which must be stipulated at the outer surface of a cell around
every particle so that the hydrodynamic problem of a stream around a particle can be solved. For in-
stance, various well-known variants of the cell model (Happel, Kuvabary, et al.) lead to substantially dif-
ferent conclusions concerning the velocity and pressure field around a particle as well as the heat and
mass flow toward it. For this reason, the problem of convective diffusion toward solid particles in a com-
pact disperse system was analyzed in [6] on the basis of the more rigorous flow model which had been
proposed in [7]. Here we will extend the results obtained in [6] to compact systems of droplets or bubbles,
the constricted flow of a carrier fluid in such systems having been analyzed in [8]. We will use here the
method of reducing the equation of convective diffusion to a certain equation of heat conduction with a
variable thermal conductivity, such an equation having been already solved in [9] (see also [10]). Further-
more, the results based on this theory will be compared with test data pertaining to compact systems of
solid particles, In order to be specific, we will discuss convective diffusion and the Sherwood number but,
in view of the well-known analogy between diffusion and heat conduction, all results will apply also to heat
conduction and the Nusselt number,

According to [9, 10], the equation of convective diffusion in the "thin diffusion boundary layer" ap~
proximation at the interphase boundary reduces to the following approximate equation:
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with the tangential velocity v, of the fluid at that boundary assumed to be expressible in terms of the flow
function ¢. If the interphase boundary is spherical, then the flow function in its vicinity can be repre-
sented as

P x> — (Uyal - 3/4U.5) sin® 0, (2
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where in the special case of an isolated particle the coefficients U; and U, are equal, respectively, to the
fluid velocity at the equator of such a particle (§ =1/2n) and the relative velocity of the fluid far away
from this particle,

In the case of constricted flow around a solid sphere, a droplet, or a bubble with surfaces stagnated
by surfactant materials, the first term in (2) vanishes and coefficient U, becomes {7, 8}:
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(for simplicity, we consider a monodisperse system of particles with a radius a).

The second extreme case is realized in a stream arownd droplets or bubbles with a viscosity u and
without surfactants, when the second term in (2) may be disregarded as negligibly smaller than the first
term. In this case the results of [8] yield
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where ¢ ={(p, n) is the positive root of the equation
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It is not difficult to show that, when 0 < p < 2/3, this equation has only one positive root which be-
comes zero when p = 0. Curves representing the relation between ¢ and p are shown in Fig. 1 for various
values of n.

Solving Eq. (1) under the conditions
€= cu(r-»- oo; r=:0, 0=:0), c=0(r==a, 0:0)

accurately, by the same method which was used in [9, 10], will yield the following earlier expression {6]
for the mass current toward a solid sphere

J=7.98 (D%2*U,)\3 c,, (8)
and for the mass current toward a droplet or a bubble : %
5.72 (Da®U ¥ ¢,
Introducing the Sherwood number S, using also (3) and (4), we obtain:

for-a solid sphere (or a droplet with a stagnant surface) (8)
S = Bee®, B =0.998¢" (p),
and for a droplet or a bubble with a free surface
S = Cré”?, C = 0.4620"7 (o, %). (9)

We will note certain limitations on the applicability of the critical relations (8) and (9). First of all,
they apply to monodisperse systems. Extending them to polydisperse systems leads to trivial results, it
essentially amounts to replacing functions ¢(p) and &g, 1) in (4) and (5) by other functions for the deter-
mination of coefficients B-and C in (8) and (9), functions which additionally depend also on the moments of
the size spectrum of particles and which follow directly from the analysis in {7, 8] concerning the hydro-
dynamics of constricted flow around particles. Such a generalization of formula (8) can be found in [6].

Furthermore, it has really been assumed in the derivation of Eq. (9) that the flow function around a
bubble or a droplet can be closely enough approximated by the first term in Eq. (2). Obviously, this is
valid only so long as the diffusion current (6) remains much smaller than the diffusion current (7). Con-
sidering that coefficients U; and U, are of the same order of magnitude in the case of a stream around a
droplet or a bubble, we obtain by a simple transformation the following applicability criterion for formula
(9):

pe'’* > x. (10)

In the general case of an arbitrary relation between Pe and ., when inequality {10) may not neces~
sarily hold true, the method of [9, 10] is not suitable here. However, one may use then the more roughly
approximate polynomial method, which had been first proposed in [11, 12] for the analysis of convective
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Fig. 1. Positive root { of Eq. {5), as a function of the volume concentration p, for various values
of » (indicated by the numbers next to the curves).

Fig. 2. Ratio C/C, as a function of the volume concentration o, for various values of » (indicated
by the numbers next to the curves).

Fig. 3. Coefficient B as a function of the volume concentration p: the solid curve represents for-
mula (8); the dashed curve represents B ~ (1—p)~t [16]; 1) data from [13]; 2) data from [14]; 3)
data according to MacConnell and described in [15],

diffusion, and derive by it an interpolation formula for S of the same kind as had been considered in [1, 4].
It is to be noted that relation (9) applies to pure systems containing no surfactants, This relation can be
extended to systems which contain surfactants, by an analogy to the analysis in [1, 5] based on the general
theory which has been developed in [9] concerning the effect of such additives on the mobility of the inter-
phase boundary.

When ¢ — 0, the filtration velocity U of a fluid passing through a cluster of particles approaches the
Stokes velocity U, of a single particle, while functions ¢(0) and &g, n) become, respectively, equal to 1
and (1 + »). As a result, coefficients B and C become B = By = 0.998 and C = C, = 0.462 (1 + n)™'/?, while
{8) and (9) become the well-known formulas describing the mass transfer which involves a single particle
and the ambient medium (see, for instance, [9]). The ratio C/C,, which characterizes the change in the
Sherwood number for single droplets or bubbles, is shown in Fig. 2 (the change in the Sherwood number is
not shown here, because the definition of the Peclet number is based on the fluid filtration velocity in the
case of a2 compact cluster but on the Stokes stream velocity in the case of single particles).

A comparison between the relations in Fig. 2c and those obtained by mass- and heat-transfer tests
in disperse systems of the liquid—-gas kind is difficult to make, because the surfactant content is usually
either not checked at all or not reported in the data. Considering the strong effect which stagnancy of a
droplet or bubble surface may have on the process of mass and heat transfer, a direct comparison be-
tween theory and available test data pertaining to such systems seems premature. It is feasible, however,
to verify the theory by a comparison with the test results of many experiments regarding the mechanism
of mass and heat transfer in close-packed and fluidized beds of granular solid particles.

Most test data of this kind are represented either graphically or in the form of empirical equations
for the so-called Colburn factor

j=SRe1Sc? - e, ¢) (11)

as a function of the Reynolds number Re or some effective Reynolds number including not only Re but also
the porosity € = 1—p, used in different ways by different authors, The theoretical expression for the Col-
burn factor in (11), corresponding to the critical relation (8), is

j= BRre™Y® :Re*—2/3’ RE*:RBB—?/Q . (.12)

It is this expression which ought to be compared with formulas of the (11} kind.
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Fig. 4. Theoretical relation (12) between the Colburn
factor j and the modified Reynolds number Rex, and
test data: 1) from [13}; 2) from [14]; 3) from [15]; 4)
from [18]; 5) from [19].

First of all, we will compare test data with the formula for coéfficient B, in (3) and (8), as a func-
tion of p (Fig. 3). Tests were usually performed with the bed porosity varying from 0.3 to 0.5, unfor-
tunately, making it impossible to verify (8) for B = B(s) over the entire range of p (or £). However, the
arithmetic mean values calculated from the data in [13-15) and shown in Fig. 3 agree closely enough with
the theoretical curve. Empirical relations for the Sherwood number 8 or the Colburn factor j as functions
of the porosity & have been proposed by several authors. According to [16], for instance, S ~ e~} (dashed
line in Fig. 3). Other authors ([17], for instance) have proposed a relation S ~ £~2 applicable to systems
with a high Reynolds number (Re = 100-1000) and, therefore, not suitable for comparison with this theory.
A survey of other such empirical relations can be found in [2].

The relation (12) for the Colburn factor j as a function of the modified Reynolds number Re x, when
plotted to a logarithmic scale, appears as a straight line (Fig. 4). In order to compare it with test data,
the latter are expressed in terms of relation (11) and then referred to j, Re s coordinates, with Rex deter-
mined from (12). In Fig. 4 are also shown, after necessary conversions, test results from [13, 18] ap-
plicable to relatively low values of the Reynolds number Re and test results from [14, 15, 19] applicable to
high values of the Reynolds number. According to Fig. 4, the relation j ~ Re™? /3 (or the equivalent rela-
tion 8 ~ Re_l/3) is valid when the Reynolds number remains smaller than wnity, but in reality is valued up
to Rey ~ 100. This has been noted in [3] already and it fully confirms the viewpoint stated in [6] that re-
sults pertaining to low values of the Reynolds number in a constricted stream should apply also to high
values of Re, inasmuch as the separation of the boundary layer is in this case impeded.

In conclusion, we note that relations (8) and (9) can be applied to heat convection if the Sherwood
number and the Schmidt number (in the definition of the Peclet diffusion number) are replaced by the
Nusselt number and the Prandtl number, respectively.

NOTATION

is the radius of a particle;

is the coefficient in formula (8);

is the coefficient in formula (9);

is the concentration of material;

is the diffusivity;

is the total diffusion current toward the surface of a particle;
is the Colburn factor;

is the integral coefficient of mass transfer;

Pe =2aU/D is the Peclet number;

Re =2aU/v is the Reynolds number;

Feo g o AR

Reéex is the modified Reynolds number in formula (12);
S =2ak/D is the Sherwood number;
Se=v/D is the Schmidt number;
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is the filtration velocity;

are the coefficients in formuia (2);

is the tangential velocity of a fluid at the surface of a particle;
is the porosity;

is the positive root of Eq. (5);

is the angular coordinate;

is the function defined in (4);

is the dynamic viscosity of the carrier medium;
is the dynamic viscosity of the particle material;
is the kinematic viscosity of the ambient medium;
is the volume concentration of solid particles;

is the function defined in (3);

is the flow function,
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