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Limi t ing  re la t ions  a r e  der ived  for the Sherwood number ,  which c h a r a c t e r i z e s  convective 
diffusion to a solid sphe re ,  a drople t ,  or  a bubble in a cons t r i c ted  s t r e a m ,  appl icable  to low 
values of the Reynolds num ber  and high values of the Pee le t  number .  

Although the p r o b l e m  of heat  or mass  t r a n s f e r  to isolated pa r t i c les  in a s t r e a m  of fluid has been 
thoroughly analyzed over  var ious  ranges  of the Reynolds number  Re and the Pecle t  number  Pe (see,  for 
ins tance,  the s u r v e y  of theore t i ca l  s tudies in [1] and exper imenta l  s tudies in [2]), the solution of an ana l -  
ogous p rob l em which involves solid p a r t i c l e s ,  d rop le t s ,  or  bubbles in a dense cloud is more  difficult,  be-  
cause  the flow field which becomes  cons t r ic ted  around a single pa r t i c le  and which affects  the heat  convec-  
tion or the diffusion apprec iab ly  is usual ly unknown. The only exception he re  is the p rac t i ca l l y  impor tant  
case  where Re < 1 and Pe >> 1, when this field can be roughly es t imated  on the bas is  of the s e m i e m p i r i c a l  
cell  model of cons t r ic ted  flow, and for  which case  the diffusion or the heat  conduction have been analyzed 
in the "thin diffusion l a y e r "  approximat ion  [1, 3-5]. 

The r e su l t s  based  on this cell model a re  of doubtful validity,  however ,  f o r e m o s t  on account  of the 
inde te rminacy  of the botmdary  conditions which must  be s t ipulated at the outer  su r f ace  of a cell  around 
e v e r y  par t i c le  so that  the hydrodynamic  p rob l em of a s t r e a m  around a pa r t i c l e  can be solved.  Fo r  in- 
s tance ,  var ious  well-known var ian t s  of the cell model (Happel, Kuvabary,  et al.) lead to subs tan t ia l ly  di f -  
fe ren t  conclusions concerning the veloci ty  and p r e s s u r e  field around a par t ic le  as well as  the heat  and 
mass  flow toward it. For  this r eason ,  the p rob l em of convect ive diffusion toward solid pa r t i c l e s  in a c o m -  
pact  d i spe r s e  s y s t e m  was analyzed in [6] on the bas i s  of the more  r igorous  flow model which had been 
p roposed  in [7]. Here  we will extend the r e su l t s  obtained in [6] to compac t  s y s t e m s  of drople ts  or  bubbles ,  
the cons t r i c ted  flow of a c a r r i e r  fluid in such s y s t e m s  having been analyzed in [8]. We will use here  the 
method of reducing the equation of convect ive diffusion to a cer ta in  equation of heat  conduction with a 
va r iab le  t he rma l  conductivity,  such an equation having been a l r eady  solved in [9] (see a lso  [10]). F u r t h e r -  
m o r e ,  the r e su l t s  based  on this theory  will be compared  with tes t  data per ta in ing to compact  s y s t e m s  of 
solid pa r t i c l e s .  In o rde r  to be specif ic ,  we will d iscuss  convect ive diffusion and the Sherwood number  but, 
in view of the well-known analogy between diffusion and heat conduction, all r e su l t s  will apply a lso  to heat 
conduction and the Nusse l t  number .  

According to [9, 10], the equation of convect ive diffusion in the "thin diffusion boundary l a y e r "  ap -  
p rox imat ion  a t  the in terphase  boundary reduces  to the following approx imate  equation: 

0c = D  <) (q~ <)'''] 
D.t. , 7) i;J ' 

(1) 

with the tangential  ve loc i ty  v 0 of the fluid at that boundary a s sumed  to be expres s ib l e  in t e r m s  of the flow 
function r If the in te rphase  boundary is spher ica l ,  then the flow function in its vicini ty  can be r e p r e -  
sented as 

~l~ ~- --  (Ulo ~ - '  3/4U~_~ ~) sin 2 O, (~ 
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where in the special  case of an isolated par t ic le  the coefficients U 1 and U 2 a re  equal, respect ively,  to the 
fluid velocity at the equator  of such a part icle  (0 = 1/2~) and the relative velocity of the fluid far away 
from this part icle.  

In the case of constr icted flow around a solid sphere,  a droplet,  or a bubble with surfaces  stagnated 
by surfactant  mater ia ls ,  the f i rs t  t e rm in (25 vanishes and coefficient U 2 becomes [7, 8]: 

2--~3pi {[18p( 1-  3 )--/)- 81 "] ' /2 '  9 I - ' - 1 " 5 -  2 -  (3) = u ,  f, t, p 

(for s implici ty,  we consider  a monodisperse sys tem of part icles with a radius a). 

The second ext reme case is real ized in a s t r e a m  around droplets or  bubbles with a v iscos i ty  # and 
without surfactants ,  when the second t e rm in (2) may be disregarded as negligibly smal le r  than the f i rs t  
t e rm.  In this case the resul ts  of [8] yield 

U,-= ~ - # ( p ,  • ~}(p, z) - I+.~ , z=bt'/~t, (4) 
�9 1 - l  1/3~-i-  x 

where ~ = ~ ( p ,  ~) is the positive root  of the equation 

~ .... 3(1 ! •  9(2+3• .-" . . . . . . . . . . . . . . .  9(2 3x) =0. (55 
2~3p 2--3p 

It is not difficult to show that, when 0 < 0 < 2 / 3 ,  this equation has only one positive root which be-  
comes zero  when o = 0. Curves represent ing  the relation between ~ and o a re  shown in Fig. 1 for various 
values of n .  

Solving E q .  (1)  trader the conditions 

c = c o ( r - + o r  r .... a, 0 .... 0), c = O ( r : = a ,  0=/-:0) 

accura te ly ,  by the same method which was used in [9, 10], will yield the following ear l ie r  expression [6] 
for the mass  cur ren t  toward a solid sphere  

J =  7.98 (D~aW2)l/3 Co, (6) 

and for the mass cu r r en t  toward a droplet  or  a bubble (7) 

J:-5,72 (Da:~Ul)U" c,,. 

Introducing the Sherwood number  S, using also (3) and (45, we obtain. 

for a solid sphere (or a droplet with a stagnant surface) 
S = Bpe Va, B =:0.998(pl/3(9), (85 

and for a droplet  or a bubble with a free surface 

S =: CPd ", C -= 0.462t~ v~ (p, • (9) 

We will note certain l imitations on the applicabili ty of the cr i t ical  relations (8) and (9). F i r s t  of all, 
they apply to monodisperse sys tems .  Extending them to polydisperse sys tems leads to trivial  resul ts ,  it 
essent ial ly  amounts to replacing functions ~o(p) and ~(p, ~t) in (4) and (5) by other functions for the de te r -  
mination of coefficients B and C in (8) and (9), functions which additionally depend also on the moments of 
the size spec t rum of par t ic les  and which follow direct ly  from the analysis  in [7, 8] concerning the hydro-  
dynamics of const r ic ted flow around par t ic les .  Such a general izat ion of formula (8) can be found in [6]. 

Fur the rmore ,  it has real ly  been assumed in the derivation of Eq. (9) that the flow function around a 
bubble or a droplet can be closely enough approximated by the f i rs t  t e rm in Eq. (2). Obviously, this is 
valid only so long as the diffusion cur ren t  (6) remains  much smal l e r  than the diffusion cu r ren t  (75. Con- 
s ider ing that coefficients U 1 and U 2 are  of the same order  of magnitude in the case of a s t r eam around a 
droplet or a bubble, we obtain by a simple t ransformat ion  the following applicability cr i ter ion for formula 
(95: 

pe '/3 >> x. (10) 

In the general  case of an a r b i t r a r y  relation between pe and x ,  when inequality (10) may not n e c e s -  
sa r i ly  hold true, the method of [9, 101 is not suitable here.  However, one may use then the more roughly 
approximate polynomial method, which had been f i rs t  proposed in [11, 12] for  the analysis of convective 
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Fig. 1. Positive root ~ of Eq. (5), as a function of the volume concentrat ion p, for various values 
of n (indicated by the numbers  next to the curves) .  

Fig. 2. Ratio C / C  0 as a function of the volume concentration p, for various values of n (indicated 
by the numbers  next to the curves) .  

Fig. 3. Coefficient B as a function of the volume concentration p:  the solid curve represen t s  fo r -  
mula (8); the dashed curve rep resen t s  B ~ (1-f~) -i [16]; 1) data f rom [13]; 2) data f rom [14]; 3) 
data according to MacCorme!l and descr ibed  in [ 15]. 

diffusion, and derive by it an interpolation formula for S of the same kind as had been considered in [1,4] .  
It is to be noted that relation (9) applies to pure sys tems  containing no surfaetants .  This relat ion can be 
extended to sys t ems  which contain surfac tants ,  by an analogy to the analysis  in [1, 5] based on the general  
theory  which has been developed in [9] concerning the effect of such additives on the mobility of the in ter -  
phase boundary. 

When lJ ~ 0, the filtration velocity U of a fluid pass ing through a c luster  of par t ic les  approaches the 
Stokes veloci ty U 0 of a single par t ic le ,  while functions ~(r~) and ~(p, ~) become,  respect ive ly ,  equal to 1 
and (1 + ~). As a resul t ,  coefficients B and C become B = B 0 = 0.998 and C = C o = 0.462 (1 + n ) - I / 2 ,  while 
(8) and (9) become the well-known formulas descr ibing the mass t ransfer  which involves a single part icle  
and the ambient medium (see, for instance, [9]). The rat io C/Co,  which charac te r i zes  the change in the 
Sherwood number  for single droplets or bubbles, is shown in Fig. 2 (the change in the Sherwood number  is 
not shown here,  because the definition of the pecle t  number  is based on the fluid filtration velocity in the 
case of a compact  c lus ter  but on the Stokes s t r eam velocity in the case of s ingle part ic les) .  

A comparison between the relat ions in Fig. 2c and those obtained by m a s s -  and hea t - t r ans fe r  tests 
in d isperse  sys t ems  of the l i q u i d - g a s  kind is difficult to make, because the surfactant  content is usually 
ei ther  not checked at all or  not repor ted  in the data. Considering the s t rong effect which s tagnancy of a 
droplet  or bubble surface  may have on the process  of mass and heat t r ans fe r ,  a d i rec t  compar ison be-  
tween theory  and available test  data pertaining to such sys tems  seems premature .  It is feasible, however,  
to verify the theory  by a compar ison with the test  resul ts  of many experiments  regarding the mechanism 
of mass and heat t r ans fe r  in close-packefl  and fluidized beds of granular  solid par t ic les .  

Most test  data of this kind a re  represented  either graphical ly  or in the form of empir ical  equations 
for the so-ca l led  Colburn factor  

] = SRe-ISc -l'~ :- ](Re, e) (11) 

as a function of the Reynolds number Re or  some effective Reynolds number  including not only Re but also 
the poros i ty  e = l - p ,  used in different ways by different authors .  The theoret ical  expression for the Col- 
burn factor  in (11), corresponding to the cr i t ical  relation (8), is 

] : BRe-2/3 = Re,2/3, p ~ . =  ReB-3/2 (i2) 

It is this express  ion which ought to be compared  with formulas  of the (11) kind. 
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Fig. 4. Theoret ical  relation (12) between the Colburn 
factor j and the modified Reynolds number  R e , ,  and 
tes t  data: 1) f rom [13]; 2) f rom [14]; 3) f rom [15]; 4) 
from [18]; 5) from [19]. 

Fi rs t  of all, we will compare  test  data with the formula for co0fficient B, in (3) and (8), as a func- 
tion of p (Fig. 3). Tes ts  were usually pe r fo rmed  with the bed poros i ty  varying f rom 0.3 to 0.5, unfor-  
tunately, making it impossible to ver i fy  (8) for B = B(rJ) over the entire range of p (or e). However, the 
ar i thmetic  mean values calculated from the data in [13-15] and shown in Fig. 3 agree closely enough with 
the theoretical  curve.  Empir ica l  relat ions for the Sherwood number  S or the Colburn factor  j as functions 
of the poros i ty  ~ have been proposed by severa l  authors .  According to [16], for instance, S ~ ~_l (dashed 
line in Fig. 3). Other authors ([17], for instance) have proposed a relat ion S ~ e -2 applicable to sys tems  
with a high Reynolds number  (Re = 100-1000) and, therefore ,  not suitable for comparison with this theory.  
A survey  of other such empir ical  relat ions can be found in [2]. 

The relation (12) for the Colburn factor  j as a function of the modified Reynolds number  R e , ,  when 
plotted to a logar i thmic scale ,  appears  as a s t ra ight  line (Fig. 4). In order  to compare it with test  data, 
the la t ter  are  expressed  in t e rms  of relation (11) and then re fe r red  to j, R e ,  coordinates ,  with R e ,  de te r -  
mined f rom (12). In Fig. 4 are  also shown, af ter  neces sa ry  convers ions ,  test  resul ts  f rom [13, 18] ap-  
plicable to re la t ively  low values of the Reynolds number  Re and test  resul ts  f rom [14, 15, 19] applicable to 
high values of the Reynolds number.  According to Fig. 4, the relation j ~ Re -2/3 (or the equivalent re la -  
tion S ~ Re!/3) is valid when the Reynolds number  remains  smal le r  than unity, but in rea l i ty  is valued up 
to R e ,  ~ 100. This has been noted in [3] a l ready  and it fully confi rms the viewpoint stated in [6] that r e -  
salts pertaining to low values of the Reynolds number  in a constr ic ted s t r eam should apply also to high 
values of Re, inasmuch as the separation of the boundary layer  is in this case impeded. 

In conclusion, we note that relat ions (8) and (9) can be applied to heat convection if the Sherwood 
number  and the Schmidt number  (in the definition of the Peelet  diffusion number) are  replaced by the 
Nusselt  number  and the Prandtl  number ,  respect ively .  

NOTATION 

a is the radius of a part icle;  
13 is the coefficient in formula (8); 
C is the coefficient in formula (9); 
c is the concentration of mater ia l ;  
D is the diffusivity; 
J is the total diffusion current  toward the surface of a part icle;  
j is the Colburn factor;  
k is the integral coefficient of mass t ransfer ;  
Pe = 2a U/D is the Peclet  number;  
Re = 2 a U / v  is the Reynolds number;  
R e ,  is the modified Reynolds number  in formula  (12); 
S = 2 a k / D  is the Sherwood number;  
Sc = v / D  is the Schmidt number;  
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is the filtration velocity; 
are the coefficients in formula (2); 
is the tangential velocity of a fluid at the surface of a particle; 
is the porosity; 
is the positive root of Eq. (5); 
is the angular coordinate; 
is the function defined in (4); 

is the 
is the 
is the 
is the 
is the 
is the 

dynamic viscosity of the carr ier  medium; 
dynamic viscosity of the particle material; 
kinematic viscosity of the ambient medium; 
volume concentration of solid particles; 
function defined in (3); 
flow function. 
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